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Abstract
We compute the Bohmian trajectories of the incoming scattering plane waves
for Klein’s potential step in explicit form. For finite norm incoming scattering
solutions we derive their asymptotic space–time localization and we compute
some Bohmian trajectories numerically. The paradox, which appears in
the traditional treatments of the problem based on the outgoing scattering
asymptotics, is absent.

PACS numbers: 0365B, 0365P

1. Introduction

Bohmian mechanics [1, 2] attempts to reconcile quantum mechanics first with the notion of
observation-independent properties of physical systems (‘realism’) and second with strictly
deterministic basic laws connecting these properties (‘determinism’). While in standard
quantum mechanics a system acquires a specific property only upon measurement by random
quantum jumps, within Bohmian mechanics each individual system has all its possible
properties completely specified independently of any measurement. This is achieved by
completing the quantum states through ‘hidden variables’, which determine all outcomes of
experiments with individual systems. Whether the laws, which connect hidden variables,
can be tested experimentally, is still under debate [3, 4]. In any case the basic aim of
Bohmian mechanics has been appreciated by a growing community [5], and apart from
all fundamental controversies, Bohmian trajectories undoubtedly help to visualize the time
evolution of wavefunctions.

While the main bulk of work within Bohmian mechanics has been devoted to the
Schrödinger dynamics, there exist some results concerning relativistic quantum mechanics.
Among these is Holland’s work on the Klein paradox [6]. In this paper the Bohmian trajectories
are computed, which follow from the treatment of Klein’s Paradox as it is given by Bjorken and
Drell [7]. Bjorken and Drell present a plane wave solution of the Dirac equation for an electron,
which is exposed to a sufficiently high, one-dimensional potential step. They talk about the
various parts of their solution as incoming, transmitted and reflected waves. The paradox then
arises because the reflected probability current is greater than the incoming current and the
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transition current is directed towards the potential step. Holland [6] determined the Bohmian
trajectories associated with the plane wave solution of Bjorken and Drell. He showed that they
are time like, future directed and do not intersect. Furthermore they do not begin or end at
finite time. Thus there is no indication for the production or annihilation of electron–positron
pairs in these trajectories. However, there is something strange about them. They emerge
from the region with nonzero potential instead of moving into this region in the course of time.
Furthermore the trajectories of the physically interpretable finite norm wavepackets have not
been considered at all in [6].

A long time ago Bongaarts and Ruijsenaars [8] had already pointed out the reason for the
paradoxically directed transition current of Bjorken and Drell’s treatment: the chosen sign for
the momentum parameter in the region with nonzero potential. As a consequence, the plane
waves of Bjorken and Drell obey the boundary condition of an outgoing scattering solution
instead of an incoming one: a wavepacket superposition of these waves is localized within the
potential-free half space and propagates away from the potential step at large positive times.
At large negative times the wavepacket approaches the potential step from both sides. Thus
the surrounding talk of ‘incoming’, ‘transmitted’, and ‘reflected’ waves, which was used by
Bjorken and Drell, is mathematically unjustified and misleading.

In contrast to these outgoing wavepackets, a wavepacket superposition of the
corresponding incoming plane wave solutions, is localized within the potential-free half space
and propagates towards the potential step at large negative times. At large positive times it
moves away from the potential step in both directions. Thus, in this case the picture of an
incoming, transmitted and reflected wave is based on mathematical facts. Elaborate numerical
studies of the evolution of Gaussian wavepackets have been made in order to confirm the
completely different behaviour of the two types of wavepackets [9]. As a result, the paradox of
a negative transition current, as formulated by Bjorken and Drell and investigated by Holland,
disappears, if the incoming scattering solutions are used in place of the outgoing ones.

In this paper we first discuss the Bohmian mechanics, associated with the incoming
scattering solutions of Klein’s paradox, which initially move in the potential-free region
towards the potential step. For the building block plane waves we prove that all Bohmian
trajectories move into the region with nonzero potential. Second, we consider the finite norm
wavepackets. We derive their asymptotic space–time localization properties and compute some
trajectories numerically. We find that at large negative times, all trajectories, which carry a
substantial part of the total norm, are located in the region with zero potential and are directed
towards the potential step, where some of them are reflected and some are transmitted. At
large positive times these trajectories move away from the potential step. No indication for pair
creation at the step can be found. There remains, however, as will be shown here, a physically
questionable acceleration of slow packets upon passing the potential step.

2. The two-dimensional Dirac equation

The set of space–time points is assumed to be M := R
2. Let idM =: (x0, x1) denote the

standard chart of M . The associated tangent frame is ∂ := (∂0, ∂1). A Minkowskian metric on
M is defined byGp(∂µ, ∂ν) := δ0

µδ
0
ν−δ1

µδ
1
ν for eachp ∈ M . Let e = (e1, e2) be an orthonormal

basis of a two-dimensional C-vector space W with scalar product S : W × W → C. The
linear mappings γ µ : W → W are defined by γ 0(e0) = e1, γ 0(e1) = e0 and γ 1(e0) = e1,
γ 1(e1) = −e0. A differentiable function ψ : M → W with

iγ µ
(
∂µ − i

e

h̄c
Aµ

)
ψ = κψ (on M) (1)
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is called a classical solution of the Dirac equation with continuous external potential A =
Aµdxµ ≡ (Aµ) and Compton length κ−1 ∈ R>0. The differential geometric notation is as
in [10].

Let ψ1 and ψ2 : M → C denote the (spinor-) component functions of the function ψ :
M → W with respect to the basis e, i.e. ψ =: e1ψ

1 + e2ψ
2. The (Lorentz invariant) indefinite

inner product L of the spinor space W in terms of its scalar product S reads L (v,w) :=
S

(
v, γ 0w

) = v2∗w1 +v1∗w2. The current vector field jψ := j 0
ψ∂0 + j 1

ψ∂1 ≡ (j
µ
ψ ) of a function

ψ : M → W is defined by jψ := L(ψ, γ µψ)∂µ =
( ∣∣ψ1

∣∣2
+

∣∣ψ2
∣∣2

)
∂0 +

( ∣∣ψ1
∣∣2 − ∣∣ψ2

∣∣2
)
∂1.

Due to G(jψ, jψ) = 4
∣∣ψ1ψ2

∣∣2 � 0, the current is nowhere space like. Where jψ is nonzero,
it is future oriented. If ψ is a classical solution of the Dirac equation (1), then div(jψ) = 0.

For sufficiently regular potential, [11] from div(jψ) = 0 and j 0
ψ � 0 a probability structure

for the spaces �τ := {
p ∈ M : x0(p) = τ

}
with τ ∈ R can be established as follows. The

norm of the restriction ψτ of a classical solution ψ to �τ for any τ ∈ R is defined by

‖ψτ‖ :=
(∫ ∞

−∞
j 0
ψ(τ, ξ)dξ

)1
2

.

For solutions with ‖ψ0‖ < ∞ the equation ‖ψτ‖ = ‖ψ0‖ holds for any τ ∈ R. Therefore the
density

ρψ,τ := j 0
ψ(τ, ξ)

‖ψ0‖2
|dξ | with ξ := x1

∣∣
�τ

is a probability density on �τ .
It has been suggested in section 12.2 of [1], and in section 12.2 of [2], that, due to

div(jψ) = 0, the density ρψ,τ is the transport of ρψ,0 from �0 to �τ along the flow lines of
jψ . The phenomenon may be visualized as the evolution of the mass distribution of a cloud of
dust along the individual particle trajectories. In consequence, the set of flow lines of jψ , the
Bohmian trajectories, have been taken seriously as the possible particle world lines, i.e. each
(one particle) system in the quantum state represented by ψ is supposed to realize one of the
flow lines of jψ in the course of time.

A general set of potentials and initial conditions (including singular ones) seems to be
unknown such that the global Bohmian trajectories densely fibre supp(jψ). (A global trajectory
is one which extends both unboundedly into the past and into the future. A dense fibration
is such that the set X ⊂ supp(jψ) of points, which lie on a global Bohmian trajectory, obeys
ρψ,τ (X ∩ �τ) = 1 for any τ ∈ R.) The analogous problem in the Schrödinger case has been
described by Berndl in [5] and resolved in [12] for a wide class of potentials.

Lacking such general results for the Dirac equation we confine ourselves to the very
specific case of a discontinuous potential step. Let 0 � V ∈ R and # : R → R denote
the step function #(x � 0) := 1 and #(x < 0) := 0. Then the differential 1-form
A := A0dx0 with − e

h̄c
A0 := V · (# ◦ x1

)
, defined on U := {

p : x1(p) �= 0
}
, is introduced as

an external potential into the restriction of (1) to the domain U . Only classical solutions of the
restricted equation with a continuous extension to M are taken into consideration. This yields
the following system of partial differential equations for differentiable component functions
ψi : U → C with continuous extension to M:

i∂0

(
ψ1

ψ2

)
=

( −i∂1 + V#(x1) κ

κ i∂1 + V#(x1)

) (
ψ1

ψ2

)
(on U) (2)

For any such solutionψ , the current jψ is continuous onM and differentiable onU . OnU
the continuity equation div(jψ) = 0 holds.
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3. Localization of free wavepackets

The finite norm solutions of (2) with V > 0 will be constructed from the plane wave solutions
of (1) in the case A = 0. Thus this case is summarized first. See e.g. [13].

Notation 1. Let ω : R → R>0 with ω(k) :=
√
κ2 + k2 and ( : R → R>0 with

((k) := √
ω(k) + k. Then u : R → W, v : R → W with

u(k) := e ·
(

((k)

((−k)

)
v(k) := e ·

( −((k)

((−k)

)
.

Remark 2. For k �= 0 both (u(k), u(−k)) and (v(k), v(−k)) is a basis of W . The following
relations hold:

S(u(k), u(k)) = 2ω(k) S(v(k), v(k)) = 2ω(k)

S(u(k), u(−k)) = 2κ S(v(k), v(−k)) = 2κ

L(u(k), γ 1u(k)) = 2k L(v(k), γ 1v(k)) = 2k

L(u(k), γ 1u(−k)) = 0 L(v(k), γ 1v(−k)) = 0.

Lemma 3. Let k ∈ R \ 0 and let the function f : R → W be differentiable. Then (a) and (b)
hold.

(a) exp(−iω(k)x0)f (x1) : M → W solves the Dirac equation (1) with A = 0 if and only
if for some α, β ∈ C

f
(
x1

) = α exp(ikx1)u(k) + β exp(−ikx1)u(−k).

(b) exp(iω(k)x0)f
(
x1

)
: M → W solves the free Dirac equation (1) with A = 0 if and only

if for some α, β ∈ C

f
(
x1

) = α exp(−ikx1)v(k) + β exp(ikx1)v(−k).

Notation 4. For k ∈ R we denote
√

2πUk := exp(−i(ω(k)x0 − kx1)u(k), and
√

2πVk :=
exp(i(ω(k)x0 − kx1)v(k).

The frequency of these plane wave solutions belongs to (−∞,−κ) ∪ (κ,∞). To each
frequency within this range a two-dimensional subspace of single-frequency solutions to (1)
exists. The space of solutions with frequency ω(k) > κ is spanned by (Uk, U−k) and the
space of solutions with frequency −ω(k) < −κ is spanned by (Vk, V−k). Both Uk and Vk are
constant along the space-like phase velocity vector field f := ∂0 + ω(k)

k
∂1. The current vector

field, associated with both Uk and Vk , is future oriented, time like, and constant:

jUk
= jVk = 1

π
(ω(k)∂0 + k∂1).

From the plane wave solutions Uk and Vk of (1) finite norm wavepackets are formed
by superposition. Let I ⊂ R be a compact interval and let the function a : I → C be
continuous. Then the functions from I × M into W , with either (k, p) �→ a(k)Uk(p) or
(k, p) �→ a(k)Vk(p), first are continuous and second have continuous partial derivatives with
respect to xµ. Therefore the functions from M into W with either p �→ ∫

I
a(k)Uk(p) dk or

p �→ ∫
I
a(k)Vk(p) dk are differentiable and the differentiation may be interchanged with the

integration and these functions are solutions of (1) with A = 0.
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Notation 5. For a continuous function a : I → C, defined on a compact real interval I ,
wavepacket solutions U [a] and V [a] of (1) are defined by

U [a] :=
∫
I

dµ (k)a(k)Uk and

V [a] :=
∫
I

dµ (k)a(k)Vk with dµ (k) := dk

2ω(k)
.

U [a] is called the positive-frequency packet, V [a] is called the negative-frequency packet.

The movement of ‘narrow’ wavepackets U [a] and V [a] can be made plausible by
replacing the function ω in the factor exp(−ix0ω) by its tangent approximation at a point k0

from the domain I . This yields U [a] � P+ [a]Uk0 and V [a] � P− [a]Vk0 , with v0
g := k0

ω(k0)

and

P± [a] :=
∫
I

dµ (k)a(k) exp
[ ∓ i(k − k0) · (v0

gx
0 − x1)

]
.

The functions P± [a], which modulate the plane waves Uk0 and Vk0 , are constant along the
(future directed, time like) group velocity vector field g := ∂0 + v0

g · ∂1 on M . Thus the sign of
k0 determines the direction of propagation of P± [a] and in case of k0 > 0 the approximations
to both U [a] and V [a] propagate towards growing x1.

A more conclusive derivation of the space–time localization of the wavepackets U [a] and
V [a] follows from proposition (3.1) of [14]. In the present case of one space dimension this
proposition reads as follows.

Proposition 6. Let F : L2(R) → L2(R) denote the Fourier transformation, formally given
by

F (f ) : k �→ 1√
2π

∫ ∞

−∞
exp(−ikx)f (x) dx.

Let ω : R → R be twice continuously differentiable. The first derivative of ω is denoted as
ω′. Define for any t ∈ R the unitary time evolution operator ut : L2(R) → L2(R) through
ut (f ) := F−1(exp(−iωt)F(f )). Let f ∈ L2(R) and v1, v2 ∈ R be such that v1 < ω′(k) < v2

for all k ∈ suppF(f ). Then

lim
t→∞

∫ tv1

−∞
|ut (f )(x)|2 dx = lim

t→∞

∫ ∞

tv2

|ut (f )(x)|2 dx = 0.

Remark 7. Since ‖f ‖2
L2 = ‖ut (f )‖2

L2 for all t ∈ R, the above statement is equivalent to

lim
t→∞

∫ tv2

tv1

|ut (f )(x)|2 dx = ‖f ‖2
L2 .

ut (f ) localizes for t → ∞ within the interval t · [v1, v2].

Remark 8. The localization of ut (f ) for t → −∞ can be obtained from the limit t → ∞
of the evolution ũt := u−t , which has the frequency function ω̃ := −ω. In this case
−v2 < ω̃′(k) < −v1. Thus

‖f ‖2
L2 = lim

t→∞

∫ −tv1

−tv2

|ũt (f )(x)|2 dx = lim
t→−∞

∫ tv1

tv2

|ut (f )(x)|2 dx

follows. Both limits are covered by

‖f ‖2
L2 = lim

t→±∞

∫
t ·[v1,v2]

|ut (f )(x)|2 dx.
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An application of proposition (6) to the component functions of U [a] and V [a] yields
the following localization for ρψ,τ .

Proposition 9. vg := ω′ : R → R, k �→ k
ω(k)

denotes the group velocity of ω. The function
a : [k1, k2] → C be continuous. The real numbers v1 and v2 are chosen such that v1 < vg(k1)

and vg(k2) < v2. For ψ ∈ {U [a] , V [a]} then

lim
τ→±∞

∫
τ [v1,v2]

ρψ,τ = 1.

Proof. We shall check first that the assumptions of proposition (6) hold for the component
functions of our wavepackets. Consider the positive frequency case. Since the functions (
and ω are continuous and since 1

ω
is bounded, the function

gi : R → C k �→

a(k)((−(−1)ik)

2ω(k)
for k1 < k < k2

0 otherwise

belongs toL2(R). NowU [a]i is given byU [a]iτ = F−1
(
exp(−iωτ)gi

)
. Asω has continuous

derivatives of arbitrary order, the evolution is of the type of proposition (6). The second
derivative ω′′(k) = κ2

ω(k)3 > 0 implies that the group velocity function k �→ ω′(k) = k
ω′(k) is

strictly increasing. From this one obtains the bounds v1 < ω′(k) < v2 for any k ∈ [k1, k2].
Thus proposition (6) yields∥∥∥U [a]i

∣∣
�τ

∥∥∥2

L2
= lim

τ→±∞

∫
τ ·[v1,v2]

∣∣U [a]i (τ, x)
∣∣2

dx.

From this and ‖U [a]τ‖2 = ∥∥U [a]1
τ

∥∥2
L2 +

∥∥U [a]2
τ

∥∥2
L2 the statement follows. The case of

negative-frequency packets is analogous. �

Remark 10. Proposition (9) states that the probability density ρψ,τ is localized within the x1

interval τ · [v1, v2] for τ → ±∞. In case of 0 < k1 < k2 it is localized in the half space x1 < 0
for τ → −∞ and in the half space x1 > 0 for τ → ∞. The localization is right moving. In
the case of k1 < k2 < 0 it is localized in the half space x1 > 0 for τ → −∞ and in the half
space x1 < 0 for τ → ∞. It is left moving.

4. Plane waves for V > 2κ

Let ψ = exp(−iωx0)f (x1) with f : R → W be a single-frequency solution of (2)
with the frequency ω > κ . With some α, β ∈ C the equation ψ = αUk + βU−k

holds on M− := {
p ∈ M : x1(p) < 0

}
. Here k > 0 is determined by ω(k) = ω. On

M+ := {
p ∈ M : x1(p) > 0

}
the function exp(iV x0)ψ equals a single-frequency solution of

equation (1) with A = 0. Its frequency reads ω′ := ω − V .
Klein’s phenomenon occurs for ω′ < −κ . Thus we restrict our discussion to the case

κ < ω < V − κ . This implies V > 2κ . In that case

ψ = exp(−iV x0)
[
γVq + δV−q

]
(on M+)

with γ, δ ∈ C and with q > 0 being determined by −ω(q) = ω′ = ω(k) − V . The constants
α, β, γ, δ are restricted by the condition that ψ is continuous, which is equivalent to

αUk(0, 0) + βU−k(0, 0) = γVq(0, 0) + δV−q(0, 0). (3)

Since Uk(0, 0) and U−k(0, 0) are linearly independent, this system of linear equations for
(α, β, γ, δ) is of rank 2. Thus the space of single-frequency solutions ψ to (2) is two
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dimensional. Within this space there are several one-dimensional subspaces of particular
physical importance.

One of these spaces comprises the single-frequency solutions with δ = 0. Its relevance
emerges from the asymptotic behaviour in time of the wavepackets formed from these solutions.
As will be discussed in the next section, the x0 = τ restrictions of such wavepackets localize
for τ → −∞ within the half line x1 < 0. Thus these packets have a right-moving incoming
asymptotics. Similarly, the α = 0 plane waves are the building blocks, from which incoming
left-moving packets are formed through superposition. Wavepackets built from either α = 0
or δ = 0 plane waves correspond to the ‘incoming’ scattering solutions of the general quantum
scattering theory [13]. They have a well defined half space localization and direction of
movement for τ → −∞. ‘Outgoing’ scattering solutions approaching a wavepacket which,
for τ → ∞, moves out exclusively towards x1 → −∞, are obtained from γ = 0. These are
the solutions, on which [6,7] base their discussion of Klein’s phenomenon. Finally, ‘outgoing’
solutions, which approach a wavepacket, that, for τ → ∞, exclusively moves out towards
x1 → ∞, are obtained from β = 0.

Up to a constant factor the single-frequency solutions with δ = 0 are given by the following
lemma, which follows from the continuity condition (3) with α = 1 and δ = 0.

Lemma 11. Let V > 2κ > 0 and k > 0 be such that ω(k) < V − κ holds. Let the function
ψ : M → W be continuous and such that for some q > 0 and some r, t ∈ C

ψ =
{
Uk + rU−k on M−
exp(−iV x0)tVq on M+

holds. Then ψ is a solution of (2) if and only if (1)–(3) hold.
(1) q is the unique solution of ω(k) + ω(q) = V in R>0,
(2) r = r(k) := −2κV

V 2−(k−q)2 ,

(3) t = t (k) := −2 k
κ

((k)((−q)

V +k−q
.

Notation 12. The solution ψ of (2), which is given by lemma (11) is denoted by U in
k in what

follows.

Remark 13. Observe that due to V 2 − (k − q)2 = 2(κ2 + ω(k)ω(q) + kq) > 0 and due to
V + k − q = ω(k) + k + ω(q) − q > ω(q) − q > 0 the inequalities r(k) < 0 and t (k) < 0
hold.

Remark 14. The wavenumber q is given explicitly through q = s(k), with the differentiable
function

s :
(

0,
√
V 2 − 2κV

)
→

(
0,

√
V 2 − 2κV

)
k �→

√
V 2 − 2Vω(k) + k2.

The function s is a monotonically decreasing bijection. It has the fixed point k0 =
V
2

√
1 − (

2κ
V

)2
. Thus if k < k0 then q > k0 and if k > k0 then q < k0. These inequalities

will show up in the group velocity of narrow wavepackets through either an acceleration or a
deceleration upon transition through the potential’s singularity at x1 = 0.

Proposition 15. For the current vector field jU in
k

πjU in
k

= t (k)2 [ω(q)∂0 + q∂1] + 2κr(k)#(−x1)
[

cos(kx1) − 1
]
∂0

holds. jU in
k

is differentiable and div(jU in
k
) = 0 everywhere on M .
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Proof. From remark (2) one obtains by inserting the restrictions ofU in
k toM± into the current’s

definition the equations

πjU in
k

=
{ [

ω(k)
(
1 + r(k)2

)
+ 2κr(k) cos(kx1)

]
∂0 + k

(
1 − r(k)2

)
∂1 on M−

t (k)2 {ω(q)∂0 + q∂1} on M+.

The continuity ofU in
k implies the continuity of jU in

k
, which in turn is equivalent to the equations

ω(k)
(
1 + r(k)2

)
+ 2κr(k) = ω(q)t (k)2

k
(
1 − r(k)2

) = qt (k)2.

(They are easily checked by inserting the explicit expressions for r(k) and t (k).) From
this the formula for jU in

k
follows on M . Though U in

k is not differentiable where x1 = 0,

its current field is differentiable in every p ∈ M because of
[
cos(kx1) − 1

]
(p) = 0 and(

∂µ
[
cos(kx1) − 1

])
(p) = 0 for x1(p) = 0. Obviously, div(jU in

k
) = 0 holds on M+ ∪ M−.

Since jU in
k

is differentiable on M , it follows that div(jU in
k
) = 0 on M . �

Remark 16. From the j 1-continuity condition
(
1 − r(k)2

) = qt (k)2

k
> 0 and from r(k) < 0

the bounds −1 < r(k) < 0 follow.

Remark 17. Since the Lie bracket
[
∂0, jU in

k

] = 0, the current vector field jU in
k

is x0-shift
invariant.

Definition 18. Let j be a differentiable vector field onM . Let γp : I → M obey the differential
equation γ̇p = j ◦ γp and the initial condition γ (0) = p. The open interval I ⊂ R is assumed
to be maximal. Since j is differentiable, γp is unique. γp is called the maximal integral curve
of j through p ∈ M and the set γp(I ) ⊂ M is called the orbit of γp. If j is the current vector
field of a solutionψ of the Dirac equation, then the orbit of γp is called the Bohmian trajectory
of ψ through p.

Remark 19. jU in
k

is a bounded and everywhere future directed time-like vector field with

positive, constant component j 1
U in
k

. Thus along a Bohmian trajectory of U in
k the function x1

increases with x0, i.e. the trajectories move towards the potential step from x1 < 0. To be
more specific: on M+ the equation jU in

k
= t (k)2jUq

holds. On M− the current jU in
k

is the sum

of t (k)2jUq
and the nonconstant ∂0-directed, bounded vector field 2κ

π
r(k)

[
cos(kx1) − 1

]
∂0.

Due to r(k) < 0 the additional term belongs to R�0 · ∂0, which implies

0 < t(k)2j 0
Uq

� j 0
U in
k

� t (k)2j 0
Uq

+
4κ

π
|r(k)| on M−.

From this and jU in
k

= t (k)2jUq
(on M+) it follows that, due to

G(jU in
k
, jU in

k
) � t (k)2G(jUq

, jUq
) = t (k)2 κ

2

π2
> 0

jU in
k

is globally time like and future directed. Thus the current has no zeros and is nowhere
light like.

Remark 20. The velocity vector field vU in
k

:=
j 1
U in
k

j 0
U in
k

∂1 of jU in
k

relative to the inertial frame (∂0, ∂1)

is given by

vU in
k

= q

[
ω(q) − 2κr(k)

t (k)2
#(−x1)

(
1 − cos(kx1)

)]−1

∂1.
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On M+ it is the constant field q

ω(q)
∂1 and on M− it oscillates between the positive bounds

q

ω(q) + 4κ|r(k)|
t (k)2

∂1 � vU in
k

� q

ω(q)
∂1.

From the bounds of vU in
k

it is obvious that a Bohmian trajectory of U in
k cannot have a higher

velocity within the range M− than it has within M+, where its velocity is less than 1. An
explicit formula for the Bohmian trajectories of U in

k is given by the following proposition.

Proposition 21. The Bohmian trajectory 7k,τ of U in
k through p0 := (τ, 0) is the set of all

p ∈ M , on which

x0 − τ = ω(q)

q
x1 − 2κr(k)

kt (k)2
θ(−x1)

[
kx1 − sin(kx1)

]
(4)

holds.
{
7k,τ

}
τ∈R

is a disjoint covering of M and 7k,τ ∩ {
p ∈ M : x1(p) = 0

} = p0.

Proof. The current j := jU in
k

= a∂0 + b∂1 + c#(−x1)(1 − cos(kx1))∂0 with πa := ω(q)t (k)2,
πb := qt (k)2, πc := −2κr(k) is differentiable on M . With γ µ := xµ ◦ γ the differential
equation γ̇ = j ◦ γ decomposes into γ̇ 1 = b and

γ̇ 0 =
{
a for γ 1 > 0
a + c(1 − cos(kγ 1)) for γ 1 < 0.

The initial condition γ 1(0) = 0 thus implies γ 1(λ) = bλ for all λ ∈ R. Inserting this into the
equation for the component γ 0 one obtains from γ 0(0) = τ

γ 0(λ) =
{
aλ + τ for λ > 0

(a + c) λ − c

kb
sin(kbλ) + τ for λ < 0.

Thus the maximal integral curve γp0 of j through p0 reads

γp0 : R → M γp0(λ) = (τ, 0) + λ · (a, b) + #(−λ)

(
c ·

(
λ − sin(kbλ)

kb

)
, 0

)
.

Its orbit is the set 7k,τ of points p ∈ M , on which

x0 − τ = a

b
x1 +

c

kb
θ(−x1)

[
kx1 − sin(kx1)

]
holds. Obviously 7k,τ = (τ, 0) + 7k,0 holds. As x0

∣∣
7k,τ

is expressed in terms of x1
∣∣
7k,τ

, the
trajectories 7k,τ and 7k,0 therefore do not intersect for τ �= 0. In particular, 7k,0 intersects{
p ∈ M : x1(p) = 0

}
only at the single point (0, 0). Because x1

∣∣
7k,τ

→ R is a bijection, the
Bohmian trajectory of j through an arbitrary point p is obtained by the proper choice of τ .
Thus

{
7k,τ

}
τ∈R

is a disjoint covering, a fibration of M . �

Figure 1 shows the trajectory 7k,0 for V = 2.25κ and k = κ
2 within the space–time region

where −600 < κx0 < 200 and −50 < κx1 < 50.

5. Incoming localized solutions for V > 2κ

Notation 22. Let a : I → C be continuous on a closed interval I = [k1, k2] ⊂ R>0 of positive
real numbers such that on I the inequality ω < V − κ holds. The constants V and κ obey
V > 2κ . Then U in [a] : M → W denotes the wavepacket U in [a] := ∫

I
dµ (k)a(k)U in

k .
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Figure 1. 7k,0 for k = κ/2 and V = 2.25κ .
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Figure 2. Trajectories for < = 0.1κ and K = 0.3κ .

Proposition 23. U in [a] is continuous on M and differentiable on U . It is a solution of
equation (2). Let ar : [−k2,−k1] → C and at : [s(k2), s(k1)] → C be defined by
ar(k) := r(−k)a(−k), at (q) := q

k
t (k)a(k) with k =

√
V 2 − 2Vω(q) + q2. Then the

equations U in [a] = U [a] + U [ar ] on M− and U in [a] = exp(−iV x0)V [at ] on M+ hold.

Proof. From U in
k = Uk + r(k)U−k (on M−) there follows on M−∫ k2

k1

dµ (k)a(k)U in
k =

∫ k2

k1

dµ (k)a(k)Uk +
∫ −k1

−k2

dµ (k)a(−k)r(−k)Uk.

This proves U in [a] = U [a] + U [ar ] on M−.
Similarly, with q = s(k) :=

√
V 2 − 2Vω(k) + k2 there follows on M+∫ k2

k1

dµ (k)a(k)U in
k = exp(−iV x0)

∫ k2

k1

dµ (k)a(k)t (k)Vs(k).
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Figure 3. Trajectories for < = 0.05κ and K = 2.7κ .

The function s is defined implicitly by ω + ω ◦ s = V . This implies first s = s−1 and second
dω = −d (ω ◦ s). Substitution of the integration variable k by q = s(k) then yields∫ k2

k1

dk

2ω(k)
a(k)t (k)Vs(k) =

∫ k2

k1

dω (k)

2k
a(k)t (k)Vs(k)

= −
∫ s(k2)

s(k1)

dω (q)

2q

q

s(q)
a(s(q))t (s(q))Vq

=
∫ s(k1)

s(k2)

dµ (q)
q

s(q)
a(s(q))t (s(q))Vq.

This proves U in [a] = exp(−iV x0)V [at ] on M+. The statements about the continuity and
differentiability follow from the continuity of ar and at through application of elementary
analysis theorems. �

Remark 24. The localization of U in [a] for τ → ±∞ is immediate from proposition (23).
Since ar has its domain within R<0 and a and at have their domains within R>0, the wavepacket
U [ar ] is left moving, while U [a] and U [at ] are right moving. At large negative times U in [a]
approximates U [a], which moves in through M− towards x1 = 0. At large positive times
U in [a] approximates U [at ] + U [ar ]. The transmitted wave U [at ] moves away from x1 = 0
through M+ and the reflected one, U [ar ], moves away from x1 = 0 through M−.

Rigorous analysis of whether the Bohmian trajectories of U in [a]
∣∣
M−

may be connected

with the trajectories of U in [a]
∣∣
M+

across x1 = 0 in a unique way is left to further investigation.
As an indication that this should be possible, we present some trajectories, computed
numerically.

For V = 4κ we choose for several values of the constants < > 0 and K > 0 the Fourier
amplitude

a : [k1, k2] → R a(k) := exp

(−(k − K)2

<2

)
with k1 = K−2<, k2 = K+2<. The domain of the function s of remark (14) is 0 < k <

√
8κ

and its fixed point is k0 = √
3κ . Clearly, the constants K and < have to be chosen such that

[k1, k2] is contained in the domain of s. First the wavepacket U in [a] is computed numerically
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in that space–time region, where it hits the potential step. Second from the associated current
field some Bohmian trajectories are computed by numerical integration. The starting points
are chosen within �τ around the centre of localization of ρU in[a],τ . The initial time τ is such
that the main bulk of the probability distribution ρU in[a],τ has not yet arrived at the potential
step.

Figure 2 shows some trajectories for < = 0.1κ and K = 0.3κ within the space–time
region where −180 < κx0 < 200 and −100 < κx1 < 300. Since the wavenumbers k from
the domain of a obey k < k0 the domain of a is mapped into k > k0 by s such that the
transmitted packet is faster than the incoming one. This might be considered as what is left
over from Klein’s paradox.

Figure 3 shows some trajectories for < = 0.05κ and K = 2.7κ within the space–time
region where −100 < κx0 < 160 and −300 < κx1 < 200. Since the wavenumbers k from
the domain of a obey k > k0 the transmitted packet is slower than the incoming one. Many
more pictures for related situations are contained in [15].
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